Sample-Based Methods for Factored Task and Motion Planning

نویسندگان

  • Caelan Reed Garrett
  • Tomás Lozano-Pérez
  • Leslie Pack Kaelbling
چکیده

There has been a great deal of progress in developing probabilistically complete methods that move beyond motion planning to multi-modal problems including various forms of task planning. This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and action spaces. The formulation characterizes conditions on the submanifolds in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that are provided as part of a domain specification. We present domain-independent sample-based planning algorithms and show that they are both probabilistically complete and computationally efficient on a set of challenging benchmark problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling-Based Methods for Factored Task and Motion Planning

This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constr...

متن کامل

Closing the Loop between Motion Planning and Task Execution Using Real-Time GPU-Based Planners

Many task execution techniques tend to repeatedly invoke motion planning algorithms in order to perform complex tasks. In order to accelerate the perform of such methods, we present a real-time global motion planner that utilizes the computational capabilities of current many-core GPUs (graphics processing units). Our approach is based on randomized sample-based planners and we describe highly ...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Planning Time: A Mediating Technique between Fluency and Accuracy in Task-Based Teaching

Task-based instruction is arguably associated with fostering fluent L2 speech distant from native-like accuracy. Of several methodological options recommended for accounting for accuracy problems of meaning-first approaches to language teaching, planning time has been explored in this study. Three groups of English majors watched a cartoon and narrated their accounts of watching under no-planni...

متن کامل

Distributed Market-Based Algorithms for Multi-Agent Planning with Shared Resources

We propose a new family of market-based distributed planning algorithms for collaborative multi-agent systems with complex shared constraints. Such constraints tightly couple the agents together, and appear in problems ranging from task or resource allocation to collision avoidance. While it is not immediately obvious, a wide variety of constraints can in fact be reduced to generalized resource...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017